ADDITIONAL SESQUITERPENOIDS FROM THE FRUITS OF SMYRNIUM GALATICUM

AYHAN ULUBELEN and NEZHUN GÖREN

Faculty of Pharmacy, University of Istanbul, Istanbul, Turkey

In a previous study of the roots and fruits of Smyrnium galaticum Czeczott (Umbelliferae) (1) we isolated two oxepine and two eudesmane-type sesquiterpene lactones: smyrnicordiolide 8-hydroxysmyrnicordiolide 1B-acetoxyeudesma-4(15),7-dien-8,12olide (3), and 1β-acetoxy-8β-hydroxyeudesma-4(15),7-dien-8,12-olide (4), as well as steroidal and aromatic compounds. In a recent investigation of the fruits of the same plant material we isolated three new eudesmane-type compounds, one of which was a furanoeudesmane and the other two were lactones. All three compounds were the isomers of previously obtained sesquiterpenoids. 1B-Acetoxyeudesma-3,7,11-trien (5) is isomer of 1\beta-acetoxyeudesma-4(15), 7, 11-trien (6) (2); 1β -acetoxy-8hydroxyeudesma-3,7-dien-8,12-olide (7) is the isomer of (4), and 1-oxoeudesm-7(11)-en-8,12-olide (8) is the isomer of istanbulin B (9) (3,4). During the course of this study we observed the facile oxidation of 5 to 7.

spectrum of 1βmass acetoxyeudesma-3,7,11-trien (5) indicated a molecular formula C₁₇H₂₂O₃ $(M^+, m/z 274)$. The ir spectrum showed the acetyl peak at 1725 cm⁻¹, unsaturation at 1650 cm⁻¹, and furan at 880 cm⁻¹ but no hydroxyl or lactone peaks. The ¹H-nmr spectrum showed two methyl singlets at δ 1.34 (H-14) and 1.70 (H-15), one methyl doublet at δ 1.94 (J=1 Hz) (H-13), and the acetyl peak at δ 2.14. The furan ring proton was observed at δ 7.08 (H-12) as a broad singlet; the olefinic proton at δ 5.27 (br d, J=11 Hz, H-3) and another one proton doublet of doublets at δ 4.92 (J=4Hz and 11 Hz, H-1 α) indicated the proton next to the acetyl group. The isolated methylene at C-9 (δ 2.27, d, J=12 Hz, H-9 and δ 2.08, d, J=12 Hz, H-9') clearly indicated the suggested structure. The stereochemistry at C-1 was determined by measuring the J values of H-1 ($J_{1a,2a}$ =11 Hz and $J_{1a,2e}$ =4 Hz) and by studying a Dreiding model.

The mass spectrum of 1B-acetoxy-8-hydroxyeudesma-3,7-dien-8,12-olide (7) indicated a molecular formula $C_{17}H_{22}O_5$ (M⁺, m/z 306). The ir spectrum showed hydroxyl at 3450 cm⁻¹, lactone carbonyl at 1755 cm⁻¹, acetyl carbonyl at 1725 cm⁻¹, and unsaturation at 1640 cm⁻¹. The structure of 7 was established by the ¹H-nmr spectrum. Two methyl singlets were observed at δ 1.29 (H-14) and 1.60 (H-15), a methyl doublet at δ 1.96 (J=1Hz) (H-13), and a one proton doublet of doublets at δ 4.97 (J=4 Hz and 11 Hz, $H-1\alpha$) was assigned to the proton geminal to the acetyl group at C-1. Another one proton doublet of doublets at δ 5.08 (J=4 Hz and 11.5 Hz, H-3) indicatedthe presence of an olefinic proton at C-3. The lack of a lactone proton and the presence of an isolated methylene group at C-9 (δ 2.42, d, J=12 Hz, H-9 and 2.08, d, J=12 Hz, H-9') suggested that the hydroxyl group should be at C-8. The stereochemistry at C-1 was decided by measuring the J values of H-1 $(J_{1a,2a} = 11 \text{ Hz and } J_{1a,2e} = 4 \text{ Hz})$ and by studying a Dreiding model.

The molecular ion peak at m/z 248 suggested a molecular formula $C_{15}H_{20}O_3$ for 1-oxo-eudesm-7(11)-en-8,12-olide (8). The ir spectrum showed a lactone carbonyl at 1750 cm⁻¹, a ketone carbonyl group at 1715 cm⁻¹, and no hydroxyl peak. The ¹H-nmr spectrum showed two methyl doublets at δ 1.95 (J=1 Hz) (H-13) and at δ 0.8

 $(J=7~{\rm Hz})$ (H-15) and a methyl singlet at δ 0.97 (H-14). The lactone proton was at δ 4.96 (dd, $J=5~{\rm Hz}$ and 10 Hz, H-8 β) and the other peaks were between 1.1 and 2.5 ppm. The stereochemistry at C-8 was decided by measuring the J values for H-8 ($J_{8a,9a}=10~{\rm Hz}$ and $J_{8a,9e}=5~{\rm Hz}$) and by studying a Dreiding model.

EXPERIMENTAL

PLANT MATERIAL.—The same plant material that was used in the previous study (1) was also used here.

EXTRACTION AND ISOLATION OF THE COMPOUNDS.—The compounds were extracted by Et₂O-petrol (1:2) and fractioned from a Si gel column using petrol and a gradient of Et₂O as elution solvents. The compounds obtained from the column were further purified on preparative tlc plates using petrol for **5** and Et₂O-petrol (1:1 and 2:1) for **7** and **8**; all reported compounds were homogeneous by tlc in three different solvent systems [C₆H₆-Et₂O (1:1), petrol-Et₂O (8:2), and petrol]. The spectra were recorded as follows: uv, Varian Techtron model 635; ir, Perkin-Elmer 577; ¹H nmr WM 400 MHz; ms, Varian MAT 711.

1β-Acetoxyeudesma-3,7,11-trien (5).—Amorphous, yield 5 mg, Rf (petrol-Et₂O, 8:2) 0.80; uv λ max (EtOH) 218 nm; ir ν max (KBr) 2940, 2860, 1725, 1650, 1460, 1385, 1250, 1120, 1075, 960, 880 cm⁻¹; 1 H nmr given in the text; ms m/z (rel. int.) (M)⁺ 274 (C₁₇H₂₂O₃) (8), 259

 $(M-Me)^+$ (20), 214 $(M-AcOH)^+$ (5), 151 (60), 109 $(C_7H_9O)^+$ (48).

1β-Acetoxy-8-bydroxyeudesma-3,7(11)-dien-8, 12-olide (7).—Amorphous, yield 8 mg, Rf (petrol-Et₂O, 8:2) 0.25; uv λ max (EtOH) 220 nm; ir ν max (KBr) 3450, 2950, 2840, 1755, 1725, 1640, 1450, 1380, 1245, 1100, 1080, 980 cm⁻¹; ¹H nmr given in the text; ms m/z (rel. int.) (M)⁺ 306 (C₁₇H₂₂O₅) (5), 263 (M-COMe)⁺ (5), 246 (M-AcOH)⁺ (8), 236 (80), 220 (30), 205 (100), 151 (60), 107 (C₇H₇O)⁺ (40).

1-0xoeudesm-7(11)-en-8,12-olide (8).—Amorphous, yield 10 mg, Rf (petrol-Et₂O, 8:2) 0.16; uv λ max (EtOH) 220 nm; ir ν max (KBr) 2950, 2860, 1750, 1715, 1640, 1480, 1365, 1100, 1080, 960 cm⁻¹; ¹H nmr given in the text; ms m/z (rel. int.) (M)⁺ 248 (C₁₅H₂₀O₃) (8), 220 (M-CO)⁺ (20), 205 (M-CO-Me)⁺ (20), 159 (20), 109 (C₇H₉O)⁺ (30), 108 (C₇H₈O)⁺ (70).

ACKNOWLEDGMENTS

The authors thank Prof. Dr. F. Bohlmann (Berlin) for ¹H nmr and ms spectra.

LITERATURE CITED

- A. Ulubelen, N. Gören, and N. Tanker, J. Nat. Prod., 48, 1006 (1985).
- A. Ulubelen, S. Öksüz, N. Gören, T.J. Mabry, and F. Bohlmann, *Phytochemistry*, 24, 1105 (1985).
- A. Ulubelen, S. Öksüz, Z. Samek, and M. Holub, Tetrahedron Lett., 4455 (1971).
- M. Budesinsky, M. Holub, D. Saman, Z. Smitalova, A. Ulubelen, and S. Öksüz, Collect. Czech. Chem. Commun., 49, 1311 (1984).

Received 6 March 1986